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We investigated the problem of the reflection of a plane monochromatic elastic wave from discontinuities of 

a medium in the form of a contact dislocation and calculated the coefficient of reflection of a wave from 
the latter. 

Investigations of the propagation of acoustic and electromagnetic waves in layered and inhomogeneous 

media as well as in media with discontinuities are finding increasing use in the solution of many problems. Thus, 

for example, knowing the dependence of the kinematic and dynamic parameters of elastic waves on the specific 

features of the distribution of elastic moduli of the material of the medium considered permits one to improve 

acoustic and radiowave methods of nondestructive testing of structural materials [1, 2 ], develop various means of 

transmitting signals in radioengineering [3 ], and invent new seismic methods of investigating sections of the earth's 

crust [4, 5 ]. 

When the propagation of elastic waves is considered, the medium is usually modeled either by a continuum 

with continuously varying properties or by a system of solid blocks interacting along the boundaries of their contact, 

which are represented by smooth surfaces. Recently, however, situations have arisen where the use of such notions 

leads to results that do not agree with data of full-scale or laboratory experiments. 

A way out of this situation was suggested by V.B.Pisetskii on the basis of analysis of experimental data. 

In his approach the main physical reflectors of elastic waves are discontinuities that have internal structure (contact 

and other types of dislocations), rather than structureless boundaries of sharp change in the elastic properties of 

the medium. Hence, it is necessary to determine the dynamic and kinematic parameters of elastic waves reflected 

from contact dislocations. 

In the present work a solution is proposed for the problem of the reflection and refraction of a plane 

monochromatic elastic wave from one contact dislocation. It is assumed here that a satisfactory representation of 

the real discontinuity is elastic interaction of two media through a set of discrete elements - supports - whose 

number is determined by the character of the acting load. 

Consider a medium consisting of two semi-infinite elastic plates characterized by the elasticity moduli )l, 

and the density p. The plates are separated by a contact dislocation of thickness l (Fig. 1), which consists of 

supports of thickness hi with a spacing h. In general, the supports are located randomly so that the latter assumption 

is a rather strong one. However, as shown below, using it leads to suitable results. 

Let us introduce a coordinate system as shown in Fig. 1. The process of the propagation of elastic waves 

in the media considered is described by the displacement vector o91 for the upper medium (y > 0) and o92 for the 

lower one (y < - / ) .  We assume that a generalized plane stress state is realized in the plates [6 ], and therefore for 

the vectors ogi we have the Lam~ equations 

021 
- -  = (2* +/~) div grad o91 + btAogl, 

P O t  2 
y > O ;  

(1) 

* The work was supported by the Russian Fund of Fundamental Investigations (project code 93-05-9577). 

Ural State University, Ekaterinburg, Russia. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 66, No. 

3, pp. 275-280, March, 1994. Original article submitted August 27, 1992. 

240 1062-0125/94/6603-0240512.50 @1994 Plenum Publishing Corporation 



Y 

-Z 

h ,  

]" 

].~ 

fs[ 

h "l s; 
/a z 

A,A,P 

Fig. 1. Schematic representation of the structure of a contact dislocation be- 

tween two elastic plates. 

0%2 
p - -  = (2* +/x)  div grad oJ 2 + /~Aa~ 2 , y < - I  2" = 22/z/(2 + 2be) 

012 ' �9 
(2) 

In Eqs. (1) and (2) the plates are considered to be infinite in the directions x ~ _+oo and y ~ _+oo. 

Equations (I) and (2) become connected when we take into account the interaction of the elastic continua through 

the supports. For this purpose, we introduce the simplest model of the behavior of the supports of the contact 

dislocation when an elastic wave is incident on it. 

We assume that when a wave acts on a support, the latter undergoes uniform deformation in the direction 

of the y axis. If the displacement vector 0~1 at y = 0 is o~l = (0, aq) and the displacement vector 0~2 at y = - l  is 

~2 = (0, ~o2), then the normal stress on the surface of the support y -- 0 is equal to 

--Oa)l r -- a)l y = 0 ,  x E S  i ,+ (3) 
(2"+2 /~)  Oy = ( 2 " + 2 / ~ )  l ' 

where S+is the upper surface of the i-th support. Correspondingly, at y- -  - l  

0c~ ~ -- C~ 
0t* + 2 1 2 ) ~  = (~l* + 2kt) l ' y = - l ,  x e Si - ,  (4) 

where S]- is the lower surface of the support. Note that when plane waves are incident on a support, we neglect the 

lateral displacement of the points of the medium and the support at the places of their  contact as well as shear  

stresses. 

Normal stresses on the remaining portion of the contact dislocation, as well as shear  stresses over the entire 

boundary of the contact dislocation are equal to zero, namely, 

2* Oul 0~ + 
--~-X +Ol*+2/~) - -~-y  = 0 ,  y = O ,  x gg S i , (5) 

, OU 2 O~ 2 
2 --~-x + ( 2 " + 2 / 0 - ~ - - y  ----0, y = - - l ,  x ~ S ~  , (6) 

241 



(0u  0o 1) 
l~ ~ Oy + --~-x = 0 ,  y = O ,  - o o < x < o o ,  (7) 

(ou  o,o  I 
l.t --~-y + O x } = 0 ,  y = - l , - a o < x < o o .  (8) 

Thus, Eqs. (1)-(8) are a full system of relations for determining the characteristics of the waves reflected 

from a contact dislocation. A solution to (1)-(8) obtained analytically but it has a very awkward form that can 

hardly be applied to practical calculations. Therefore we will simplify model (1)-(8) in what follows. 

Usually in practice the wavelength l greatly exceeds the spacing h between the supports. Therefore, we 

may introduce averaging over the coordinate x on a scale of length h2 satisfying the order-of-magnitude relation 

h2 >> h, h2 << l, namely, the mean value of the quantity a is equal to 

x+h 2 
1 f a d x .  

-d - 2 h E X_hE 
(9) 

Let use the notation ~i = Wi, -ui = Ui. It can be easily understood that the means Wi and Ui are inde- 

pendent of the coordinate x. Moreover, the following relations hold: 

O W i do) i O W i O~ i 

Ox Ox ' Oy Oy 

etc. Therefore, Lam6 equations (1), (2) and relations (7), (8) for the shear stresses will take the form 

02U1 02U1 

p T = f l  OY 2 , y = O ,  
(10) 

02U2 02U2 
P - -  = I t  2 ' y <  - l ,  

Ot 2 Oy 
(11) 

02 W1 02 W1 
p - (2" + 2 / ~ ) - -  y > 0  

Ot 2 Oy 2 ' , 
(12) 

02W 2 02W2 
p - (2" + 2/Q y <  - l  

Ot 2 Oy 2 ' , 
(13) 

~ (14) OU1 - 0 ,  y = 0 ;  = 0 ,  y =  - l .  
Oy Oy 

Averaging of the lef t-hand sides of Eqs. (3)-(6) is performed at once and the mean is equal to 

(2* + 2~u)OWi/Oy. To calculate the mean of the right-hand sides of Eqs. (3)-(6) we consider the integral 

I -- m 
2* + 2/* 1 x+'h2 

l 2 h 2 f f (~) d~, 
x - h  2 

where 
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/ = 
coZly=-I - ~ot [y=o, 

+ 
o, 

+ 
~ S i , 

The following relation holds: 

I -  +l 2/~ 2 lh2 hl i=IE (co2- col)~ES + '  

where N1 is the number of supports over an interval of length 2h2; obviously, N1 >> 1. 
It is not difficult to see that relation (15) can be approximately rewritten in the form 

x+h 2 

I ~ 2 + 2p hl n 2 f (0)2 - -  col) d~ = 2 + 2/z hi n ( W  2 _ W1 ) 
l l ' 

x - h  2 

where n = N 1 / 2 h 2  is the number of supports per unit length. 
Thus, we obtain two missing boundary conditions for Eqs. (10)-(13): 

(15) 

OWa han (16) 
0~- -- l ( W 2 I y = - I -  W 1 ) '  y =  0 ,  

O W  2 h l n  
- ( W z -  W i l y = o ) ,  Y = - I .  (17) 

Oy l 

All the characteristics of the contact dislocation are now incorporated in the coefficients of system (10)-(17), 

and therefore without loss of generality we can transfer boundary conditions (14) and (17) to the boundary y-- 0. 

Suppose a plane normally polarized monochromatic wave Wl = (0, exp ( i co t - i ky ) )  is incident on the contact 

dislocation (y = 0). Obviously, Ui = 0, 

W 1 = exp (icot - iky) + V exp (icot + iky), (18) 

W 2 = R exp (icot - i k y ) ,  (19) 

where V is the reflection coefficient. In accordance with Eqs.(12) and (13), we have a relationship between the 

frequency co and the wave number k: 

09 = 

1/2 

p 

after which relations (18) and (19) are the solutions of Eqs. (12) and (13) (Eqs. (10) and (11) hold, since the mean 

tangential displacements are equal to zero). 

Substituting Eqs. (18) and (19) into boundary conditions (16) and (17), we obtain a system of two linear 

inhomogeneous equations for the amplitudes V and R. The solutions of this system have the form 

V -  --1 + mi  R = r e ( m - i )  rn - 2__hln (20) 
2 ' 2 ' lk m + 1  m + 1  

Using the first of Eqs. (20), we determine the modulus r of the reflection coefficient and the phase shift 

of the reflected wave 
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Fig. 2. Dependence of the modulus of the reflection coefficient on the pressure: 

1) upper and lower plates with identical elastic properties; 2) plates in which 

the velocities of propagation of longitudinal vibrations differ twofold; points 

are experimental  data obtained by V.B.Pisetskii. 

m 2 -!/2 (21) r = I vI  = ( + 1) , ? = arctan m .  

Relations (21) determine the basic characteristics of the reflected wave from the parameters l, n, hl that 

characterize the contact dislocation. 

Let us discuss results obtained by considering two limiting situations. Suppose the number  of supports per 

unit length n is vanishingly small. In this case the upper elastic medium practically does not interact with the lower 

one and virtually borders on an empty space. Here all the energy of the wave is reflected, and the reflection 

coefficient is equal to unity.  As is seen from Eq. (20), the limit n ~ 0 corresponds to the approach of the 

dimensionless number m to zero and of the reflection coefficient r to unity, which corresponds to complete reflection. 

Consider the other  limiting case where the thickness of the contact dislocation l approaches zero. Now, the 

both elastic bodies represent  a single whole, and the wave will pass without reflection. The limit l --, 0 corresponds 

to an infinite increase in the parameter  m and the approach of the refraction coefficient R to unity. The  latter 

means complete passage of the wave. Thus,  in both situations the relations derived describe correctly the charac- 

teristics of the passage of a plane monochromatic wave. 

For applications, e.g., in seismological prospecting, it is of interest to determine the dependence of the 

coefficient r on the external  pressure p (we select the normal lithostatic pressure for the unit of pressure).  For this 

purpose, it is necessary to establish the relationship between the parameter  m and the pressure p. As far as we 

know, this relationship has not been determined theoretically or experimentally. Therefore,  here  we introduce the 

dependence between these parameters phenomenologically, proceeding from the following considerations. In the 

case of complete unloading (p -- 0), the plates virtually do not interact (n -- 0), and the parameter  m is equal to 

zero. Under  ra ther  heavy loading, the number  of contacts n per unit length increases, as does the width of the 

supports hi, and the spacing between the plates l decreases. In this case the limit p --, oo there corresponds to the 

limit m ~ oo. Taking into account the foregoing, we shall adopt the simplest dependence between the indicated 

quantities m and p: m -- ap, where the proportionality factor a is to be determined experimentally. The  dependence 

of the reflection coefficient r on the pressure is shown in Fig. 2 (curve 1). 

To determine the characteristics of reflected waves we conducted experiments on a plane modeling setup. 

It incorporates two thin flat organic glass plates separated by a contact dislocation, a loading system, and an acoustic 

source (Fig. 1). The  results of the experiments are shown by the points in Fig. 2 (the parameter  cc is taken to be 

equal to 1.4) and agree satisfactorily with the theory suggested in the present work. In conclusion we note that 

such an approach will make it possible to also obtain the solution of the problem for other  models of media with 

contact dislocations, including models that consider differences between the elastic properties of the plates (Fig. 

2), various types of filling of the space between the supports in the dislocation (gas, liquid, viscous medium),  and 
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the interaction of a set of dislocations. Investigation of these models and obtaining analytic relationships between 

characteristics of the reflected waves and parameters of the dislocations allow one to create a fundamentally new 

basis for solving inverse applied problems of seismic surveying so as to predict the dislocation structure of the 

earth's crust and parameters of stress states in it from the characteristics of elastic waves. 
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